Multimodale Datendrehscheibe NRW @

MDD NRW Schnittstellenbeschreibung

v1.6
Januar 2026

Contents
1 Autorisierung 2
2 GraphQL Endpunkt 4
2.1 Schema. . . . . . . . e e e e e e 4
2.2 Komplexe Attribute . . . . . . . . . . ..o 5
2.3 QUETIES . . . . . e e e e e e 6
2.3.1 Aufbaudes Querytypes. . . . . . . v v it e e e e e 7
2.3.2 Query Argumente . . . . . . ... 00 e e e e e e 9
2.3.3 Filternvon Queries . . . . . . . . . . . e e e e 10
2.3.4 Abfragen gebundelterDaten . . . . . .. .. ... ... ....... 11
2.3.5 Geofilter . . . . . e e e e e e 13
2.3.6 Datenkatalog Meta-Daten . .. ... ... ... ... ........ 15
2.3.7 Postman QueryBaum . . . ... .. .. ... ... 17
2.3.8 GZIP Kompression . . . . . . . . . o v v i v ittt e 19
3 GBFS Endpunkt 20
3.1 Liste der unterstutzten GBFS Versionen . . . .. ... .. ... ...... 20
3.2 Gebiuindelte GBFS Feeds . . . . . . . . . . i i i i, 20
4 GTFS Endpunkt 21
5 Datex-II Endpunkt 22
6 Geoserver 23
6.1 Authentifizierung . . . . . . . . . . . ... e 23
6.2 Endpunkte . . . . . . .. e e e 24
6.3 Beispiel: Hinzufigen des WFS Feedsin QGIS . . . .. .. ... ...... 26
7 Direkte Schnittstellen 28
7.1 DELFI Landeshintergrundsystem . . . . . ... ... ... ......... 28

7.2 goFLUX Mobility GmbH . . . . .. ... ... ... . .. .. 29

RHEINLAND

Bewegt Dich.



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

1 Autorisierung

In der MDD NRW sind jedem Nutzer ein oder mehrere Clienten zugeordnet. Clienten
stellen voneinander unabhangige Zugange zu den Daten in der MDD NRW dar. Jeder
Client verfiigt iber einen Zugangstoken (in Form eines API-Keys), mit dem die Daten
der MDD NRW abgefragt werden konnen. An den Clienten sind auch Einschrankun-
gen, wie das Request Limit und Zugriffsrechte, gebunden. Die Anzahl der Clienten
und die jeweiligen Zugriffsrechte werden nicht vom User selbst verwaltet.

Fur eine Erweiterung der Zugriffsrechte oder Erhohung des Request Limits muss der
Support unter mdd-nrw@gorheinland.com kontaktiert werden.

Jedem Clienten sind eine oder mehrere Funktionen zugeordnet, aus denen sich die eben-
falls im Nutzerportal einsehbaren Nutzungszwecke ableiten. Es ist die Pflicht jedes
Nutzers der MDD NRW diese Nutzungszwecke einzuhalten.

Die Autorisierung erfolgt mittels API-Key. API-Keys konnen von registrierten Nutzern
uber das Nutzerportal fur jeden Clienten selbst generiert und erneuert werden.

Zugangstoken
Nutzerportal Zugangstoken

Schisselname Demo

Schiisssel1D e3cdact 22174674 6729 46b629c3835

Herzlich

Mein Account Schliisselname Feo 282024

Mein Account

Zugangstoken

Nutzungszwecke

Zugangstoken

Zugelassene Provider = ISA (Infrastrukturatias)
« Bundesnetzagentur

-
N mm | e

Nutzungszwecke

Zur Autorisierung gegeniiber einer der Schnittstellen der MDD NRW muss der API-
Key im Header mit dem key x-api-key mitgegeben werden.

Seite 2 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

Beispiel:

Abfrage des GBFS Auto-discovery Files der Version 2.3 des Providers mit ID 1 mit
dem API-Key <api-key>:

curl --location

"https://mdd.gorheinland.com/gbfs-output/1/2.3/gbfs.json' \
--header 'x-api-key: <api-key>'

API-Keys werden nicht zentral in der MDD NRW gespeichert. Sie werden beim gener-
ieren einmalig dem Nutzer angezeigt und mussen vom Nutzer eigenstandig gesichert
werden. Ist der aktuelle API-Key verloren, kann dieser nicht wiederhergestellt werden

und der Nutzer muss sich im Nutzerportal der MDD NRW einen neuen API-Key gener-
ieren.

Seite 3 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

2 GraphQL Endpunkt

GraphQL ist eine Abfragesprache, die es erlaubt mittels einer query nur diejeni-
gen Daten abzufragen, die benotigt werden. Das GraphQL-Schema (siehe Kapi-
tel Schema) definiert, welche Abfragen an die Schnittstelle grundlegend moglich
sind. Die genaue Erstellung der query ist dem Nutzer uberlassen.

In GraphQL gibt es zwei Arten von Attributen, primitiv und komplex. Ein Attribut
ist primitiv, wenn es selber keine Attribute hat. Primitive Attribute haben primitive
Datentypen wie

» String

* Biglnteger
* Boolean

* Float

* DateTime

Komplexe Attribute werden im Schema beschrieben und bestehen selbst aus primi-
tiven und komplexen Attributen. Durch das Verschachteln komplexer Attribute wer-
den Verknipfungen zwischen Daten hergestellt, welche flexible Abfragen iiber mehrere
Attribute hinweg erlauben. Weitere Informationen zum Abfragen komplexer Attribute
finden sich im Kapitel Queries.

2.1 Schema

Das GraphQL-Schema kann tiber einen GET-Request an folgende URL abfragt wer-
den:

https://mdd.gorheinland.com/graphgl/schema.graphql

Die Response ist ein GraphQL-Schema. Das GraphQL-Schema beschreibt, welche
Abfragen Uber die MDD NRW GraphQL-Schnittstelle moglich sind. Es enthalt fol-
gende grundlegenden Keywords:

e type: Komplexe Datentypen
* enum: Auflistungen

e input: Argumente

Seite 4 von 29 Kontakt: mdd-nrw@gorheinland.com


https://graphql.org/learn/schema/

Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

Ein type definiert komplexe Datentypen. Komplexe Datentypen sind in GraphQL viel-
seitig einsetzbar. Neben abfragbaren Daten werden hieriiber auch die Funktionen
zum Abfragen der Daten definiert, siehe Kapitel Queries. Mehr zu komplexen Daten-
typen zum Abfragen von Daten findet sich in Kapitel Komplexe Attribute.

Ein enum ist eine vordefinierte Liste von Werten. Hier z.B. FeatureType in gekurzter
Darstellung:

enum FeatureType {
ACCESSIBLE_PARTIAL_PAVED_SURFACE
ACCESSIBLE_PAVED_SURFACE
ACCESSIBLE_UNPAVED_SURFACE
ACCESS_AT_GROUND_LEVEL
ACCESS_CURB_STEP
ACCESS_DOOR

©ONO U WN -

}

Das Keyword input weist darauf hin, dass dieser Typ als Input fir Queries verwen-
det wird, wie beispielsweise Filter. Der Input-Typ ParkingFacilityFilter wird zum
Beispiel im query listParkingFacilities verwendet. Mehr zum Thema Filtern findet
sich in Kapitel Filtern von Queries.

Die hier gezeigten Queries dienen nur zur Veranschaulichung und basieren nicht unbe-
dingt auf der aktuellsten Version des GraphQL-Schemas.

Wir empfehlen immer das aktuelle GraphQL-Schema tber die Schnittstelle abzufragen
und auf dessen Basis Queries zu bauen.

2.2 Komplexe Attribute

Ein komplexes Attribut wird mit dem Keyword type initialisiert. Alle verfiigbaren
komplexen Attribute sind im GraphQL-Schema beschrieben und sind wie folgt aufge-
baut:

"DESCRIPTION"

type TYPENAME {

FIELD_NAME : TYPE
OTHER_FIELD_NAME: DATA_TYPE

U WN -

}

TYPENAME ist der Name des komplexen Attributs. Die Attribute hinter den Feldna-
men zeigen an, welche Attribute in einer query abgefragt werden konnen.

Es ist also moglich anhand des Schemas auszulesen, welche Informationen lber
einen im GraphQL-Schema definierten type abgefragt werden konnen und mit welchen
anderen Datentypen die Informationen verkniipft sind.

Beispiel: Definition eines komplexen Datentypen

Der type ParkingFacility ist wie folgt im Schema definiert:

Seite 5 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW

Wenn ein Datenfeld in der type Definition mit eckigen Klammern "[]" umschlossen ist,
wird bei Abfragen des Datenfeldes eine Liste zurickgegeben. Beispielsweise gibt "boxes
eine Liste von komplexen Datentypen der Entitat "Box" zurick.

RHEINLAND
Bewegt Dich.

"parking facility, for example a bikebox
type ParkingFacility {
address: String
available: Boolean
boxes: [Box]
capacities: [Capacity]
chargingStations: [ChargingStation]
description: String
"Id given by provider"
externalld: String!
externalType: String
features: [ParkingFacilityFeature]
feeDescription: String
id: BigInteger
"IS0-8601"
lastUpdated: DateTime

"latitude of current location of the parking facility"

lat: Float

"longitude of current location of the parking facility"

lon: Float

lowestPriceInCents: Int

name: String!
nextPublicTransportLocation: Location
openingTimesDescription: String
parkingType: ParkingType

postCode: String

provider: Provider!

tariffs: [Tariff]

"Get entry/entries for a certain key/s"
urls(key: [UrlKey]): [Entry_UrlKey_Url]

Es ist moglich, im komplexen Attribut ParkingFacility direkt primitive Attribute wie
lat, lon und id abzufragen. Bei komplexen Attributen wie "Box" muss in der query
angegeben werden, welche Attribute von "Box" enthalten sein sollen.

Seite 6 von 29

2.3 Queries

Um die GraphQL Schnittstelle anzusprechen, sendet man einen POST Request an:

https://mdd.gorheinland.com/graphql

Eine query bestimmt, welche Attribute abgefragt werden. Wenn ein Feld selbst ein
komplexes Attribut zurick gibt, muss festlegt werden, welche Attribute man von
diesem Attribut benétigt, solange bis alle Anfrage-Aste auf einem primitiven Attribut
enden. Dieser Baum, den man in einem Query aufspannt, muss also immer auf
einem primitiven Attribut enden. Es konnen alle Attribute, welche im type Query

Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW RHEINLAND

Bewegt Dich.

aufgelistet sind, abgefragt werden.

Die query selbst wird im body des Requests mitgeschickt. Dabei konnen den Queries
Argumente tibergeben werden und der Riickgabetyp ist ebenfalls im Schema angegeben,
wie in Kapitel Komplexe Attribute beschrieben.

2.3.1 Aufbau des Query types

Welche Anfragen an die Schnittstelle moglich sind, ist ebenfalls im GraphQL-Schema
als type definiert.

"Query root"
type Query {
VehicleTypeTypeById(id: BigInteger!): VehicleType
alertById(id: BigInteger!): Alert
calendarById(id: BigInteger!): Calendar
geofencingZoneById(id: BigInteger!): GeofencingZone
"get Rides by goFlux"
getRides(arrivallLat: Float!, arrivallng: Float!, arrivalRadius: Int!, day: Int!, departurelLat: Float
!, departureLng: Float!, departureRadius: Int!, hour: Int!, minute: Int!, month: Int!,
timeDeltaSeconds: Int!, year: Int!): String
9 listAlerts(limit: Int, offset: Int, providerId: BigInteger): [Alert]
10 listCalendars(limit: Int, offset: Int, providerId: BigInteger): [Calendar]
11 listGeofencingZones(limit: Int, offset: Int, providerId: BigInteger): [GeofencingZone]
12 listLocations(limit: Int, offset: Int, providerId: BigInteger): [Location]
13 listParkingFacilities(filter: ParkingFacilityFilter, limit: Int, offset: Int, order: Order, orderBy:
ParkingFacilityOrderBy): [ParkingFacility]
14 listPricingPlans(limit: Int, offset: Int, providerId: BigInteger): [PricingPlan]
15 listProviders(limit: Int, offset: Int): [Provider]
16 listRawFeedData(limit: Int, offset: Int, providerId: BigInteger): [RawFeedData]
17 listRegions(limit: Int, offset: Int, providerId: BigInteger): [Region]
18 listRentalHours(limit: Int, offset: Int, providerId: BigInteger): [RentalHour]
19 listSharingStations(limit: Int, offset: Int, providerId: BigInteger): [SharingStation]
20 listSystemInformation(limit: Int, offset: Int, providerId: BigInteger): [SystemInformation]
21 listVehicleTypeTypes(limit: Int, offset: Int, providerId: BigInteger): [VehicleType]
22 listVehicles(limit: Int, offset: Int, providerId: BigInteger): [Vehicle]
23 locationById(id: BigInteger!): Location
24 parkingFacilityById(id: BigInteger!): ParkingFacility
25 pricingPlanById(id: BigInteger!): PricingPlan
26 providerById(id: BigInteger!): Provider
27 rawFeedDataById(id: BigInteger!): RawFeedData
28 regionById(id: BigInteger!): Region
29 rentalHourById(id: BigInteger!): RentalHour
30 sharingStationById(id: BigInteger!): SharingStation
31 systemInformationById(id: BigInteger!): SystemInformation
32 vehicleById(id: BigInteger!): Vehicle

OO U WN -

33 "Welcome"
34 welcome(name: String = "World"): String
35 }

Seite 7 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

Alle im type Query definierten Funktionen lassen sich fiir Abfragen der Daten in der
MDD NRW nutzen. Die Query

1 query ListProviders {

2 listProviders {

3 name

4 id

5 }

6 1}
beispielsweise gibt Namen und ID aller Provider zurick, auf die man Zugriffsrechte
hat.
Grundlegend lassen sich die so zur Verfigung gestellten Endpunkte in zwei Arten
unterteilen.
listEntity,
welche eine Liste der angefragten Entitat zuriickgeben und
entityById,
welche die der ID zugehorige Entitat zuriickgeben.
Die query entityByld benotigt dabei immer den Parameter "id". Zu dieser "id" muss
eine Entitat in der Datenbank existieren, damit die Abfrage funktioniert.
Beispiel: entityByld Query

1 query {

2 ParkingFacilityById(id: 1) {

3 address

4 available

5 boxes {

6 capacity

7 }

8 }

9 }
Diese Abfrage gibt alle Entitaten des types ParkingFacility zurick, welche dem provider
mit ID "1" zugeordnet sind.
Analog gibt die folgende Abfrage die gleichen Informationen fiir Entitaten des types
ParkingFacility zurtck, allerdings anstatt nur die Entitaten eines Providers eine Liste
aller Entitaten, auf die man Zugriffsrechte hat.

1 query {

2 listParkingFacility {

3 address

4 available

5 boxes {

6 capacity

7 }

8 }

9 1}

Seite 8 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

Es ist auch moglich, bei Abfragen der Art listEntity die Ergebnisse zu verfeinern. Mehr
dazu findet sich im Kapitel Filtern von Queries.

2.3.2 Query Argumente

Einer Query konnen Argumente ubergeben werden, um die Response weiter zu ver-
feinern. Die verfugbaren Argumente konnen in den im type Query definierten Funk-
tionen eingesehen werden. Beispiel: "listParkingFacilities" ist im Schema definiert
als:

listParkingFacilities(filter: ParkingFacilityFilter
limit: Int,
offset: Int,
order: Order,
orderBy: ParkingFacilityOrderBy)
: [ParkingFacility]

U WN -

Die verfugbaren Argumente sind somit
« filter: Komplexe Filter, siehe Kapitel Filtern von Queries

¢ limit (Int): Maximale Anzahl zuriickgegebener Entitaten. Es wird empfohlen
bei jeder Abfrage ein Limit zu setzen, da das Abfragen von zu vielen Entitaten
auf einmal sehr lange dauern kann. Das ist insbesondere beim Abfragen von
GTFS-Daten iiber GraphQL relevant.

» offset (Int): Anzahl von Entitaten die in der Response iibersprungen werden.
Zusammen mit limit fur Pagination geeignet.

e order: ASC fur aufsteigend, DESC fir absteigend.

* orderBy: Bestimmt, nach welchem Feld sortiert werden soll. Die verfugbaren
Felder sind als enum der zugehorigen "typeOrderBy" im GraphQL-Schema definiert.

Beispiel: Query mit Argumenten

1 query {

2 listParkingFacilities(limit: 3, offset: 2, orderBy: parkingType, order: ASC) {
3 id

4 name

5 parkingType

6 lastUpdated

7 provider {

8 id

9
0
1

Seite 9 von 29 Kontakt: mdd-nrw@gorheinland.com



Bewegt Dich.

Multimodale Datendrehscheibe NRW @ RHEINLAND

2.3.3 Filtern von Queries

Filter arbeiten auf den in type Query definierten Funktionen fiir die Datenabfrage.
Im Beispiel von "listParkingFacilities" ist als Filter der ParkingFacilityFilter definiert.
Filter sind, wie in Kapitel Schema beschrieben, im GraphQL-Schema als input definiert.
Der ParkingFacilityFilter sieht wie folgt aus:

input ParkingFacilityFilter {
address: [StringFieldFilter]
available: EqualityFieldFilter_Boolean
coordinate: LocationFieldFilter
description: [StringFieldFilter]
externalld: EqualityFieldFilter_BigInteger
externalType: [StringFieldFilter]
lastUpdated: [DateFieldFilter]
lowestPriceInCents: [NumberFieldFilter_Int]
10 name: [StringFieldFilter]
11 nextPublicTransportlLocationId: EqualityFieldFilter_BigInteger
12 nextPublicTransportLocationName: [StringFieldFilter]
13 parkingType: EqualityFieldFilter_ParkingType
14 postCode: [StringFieldFilter]
15 providerId: EqualityFieldFilter
16 providerName: [StringFieldFilter]

© OO U WN =

Im ParkingFacilityFilter sind fiir die meisten primitiven Attribute vom type Parking-
Facility je nach Datentyp Feld-Filter definiert. Dariiber hinaus gibt es einen Filter
fur ID und Name des Providers, also fiir primitive Attribute des komplexen Attributs
Provider. Die Feld-Filter sind ebenfalls im GraphQL-Schema aufgelistet. Um nach
providerld zu filtern, wird hier der Feld-Filter ProviderldFilter genutzt. Dieser ist
definiert als:

1 input ProviderIdFilter {

2 operator: ContainedOperator

3 values: [BigInteger]

4}
Feld-Filter bestehen immer aus einem value und je nach Filter iiber einen opera-
tor. Wenn es einen Operator gibt, ist der ebenfalls im GraphQL-Schema als enum
definiert. Operatoren geben an, wie die Eintrage in "value" zum Filtern genutzt wer-
den sollen. Hier wird der ContainedOperator verwendet, dieser ist definiert als:

1 enum ContainedOperator {

2 containedIn

3 notContainedIn

4}

Seite 10 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

Um hier also nur ParkingFacilities abzufragen, die den Providern mit ID "1", "2" und
"3" zugeordnet sind, muss der Filter wie folgt gesetzt werden:

1 query {

2 listParkingFacilities(
3 filter: { providerId: { values: [1, 2, 3], operator: containedIn}}
4 ) {

5 id

6 name

7 parkingType

8 lastUpdated

9 provider {

10 id

11 }

12 }

13 '}

Es konnen beliebig viele Filter unter dem filter Keyword gesetzt und kombiniert
werden. Multiple Filter werden mit Kommas getrennt und sind logisch als "und"

verkniipft.

1 query {

2 listParkingFacilities(

3 filter: {

4 providerId: { values: [1, 2, 3], operator: containedIn},
5 lastUpdated: { value: "2024-01-17T18:00:00.00Z", operator: after}
6 }

7 ) {

8 id

9 name
10 parkingType
11 lastUpdated
12 provider {
13 id
14 }
15 }
16 }

Diese Abfrage gibt also nur Entitaten zuriick, welche providerld "1", "2" oder "3"
haben und nach dem 17.01.2024 00:00 Uhr zuletzt aktualisiert wurden.
Geofilter sind besondere Filter, die in Kapitel Geofilter beschrieben werden.

2.3.4 Abfragen gebiundelter Daten

GraphQL erlaubt durch das Setzen der entsprechenden Filter das Abfragen von
geblindelten Daten. Mit gebiindelten Daten sind in diesem Kontext die Daten mehrerer
Provider gemeint, welche im Datenmodell der MDD NRW harmonisiert wurden.

Beispiel: Abfrage aller Fahrzeuge die zu den Providern mit den IDs 1, 2 und 3
gehoren:

Seite 11 von 29 Kontakt: mdd-nrw@gorheinland.com



Bewegt Dich.

Multimodale Datendrehscheibe NRW @ RHEINLAND

query ListVehicles {

1

2 listVehicles(
3 filter: {

4 providerId: { values: [1, 2, 3] }, operator: containedIn}
5 ) A

6 id

7 lastReported
8 lastUpdated
9 lat
10 lon
11 status
12 }
13 }

Der Provider-Filter erlaubt es aulserdem, Nutzern der MDD NRW die gebiindelten
Daten aller Zonen eines Providers abzufragen. Wenn zum Beispiel der Provider mit
ID 1 Zonen mit den IDs 11, 12 und 13 hat, sind folgende Abfragen identisch:

1 query ListVehicles {
2 listVehicles(

3 filter: {

4 providerId: { values: [1] }, operator: containedIn}
5 ) A

6 id

7 lastReported

8 lastUpdated

9 lat
10 lon
11 status
12 }
13 }

und

1 query ListVehicles {
2 listVehicles(

3 filter: {

4 providerId: { values: [11, 12, 13] }, operator: containedIn}
5 ) A

6 id

7 lastReported

8 lastUpdated

9 lat

10 lon

11 status

12 }

13 }

Im Datenmodell der MDD NRW wird nicht zwischen Providern und Provider-Zonen
unterschieden. Des Weiteren verfigt nicht jeder Provider iiber Zonen. Die Zuge-
horigkeit von Provider-Zonen zu Providern kann im Datenkatalog der MDD NRW
oder dem Feld parentProvider in der listProviders und providerbyID Queries ent-
nommen werden. Welche Provider iiber Zonen verfigen und welche nicht, kann im
Datenkatalog der MDD NRW eingesehen werden.

Seite 12 von 29 Kontakt: mdd-nrw@gorheinland.com


https://ckan.mdd.gorheinland.com

Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

2.3.5 Geofilter

Ortsbezogene Daten der MDD NRW konnen mittels Umkreisfilter, Polygonfilter
und Keyword nach Kommune gefiltert werden.

Umkreisfilter erlauben es, Entitaten innerhalb eines nutzerdefinierten Kreises abzufra-
gen. Wenn ein Attribut als Feld-Filter "LocationFieldFilter"

input LocationFieldFilter {
lat: Float
lon: Float
rangeInMeter: Float

U WN e

}

hat, ist es moglich durch ubergeben eines Mittelpunkts, in der Form von longitude
und latitude Koordinaten und eines Radius in Metern nur jene Entitaten zu erhalten,
die innerhalb des dadurch entstehenden Kreises liegen.

Beispiel: Umkreisfilter mit Radius 15km

1 query {

2 listParkingFacilities(
3 filter: {

4 coordinateInRadius: { lat: 50.786075564, lon: 6.101432940, rangeInMeter: 15000 }
5 }

6 ) {

7 id

8 name

9 lat
10 lon
11 provider {
12 id
13 }
14 }
15 }

Der Polygonfilter erlaubt es, eine Liste von Geokoordinaten zu ubergeben. Es wer-
den nur Entitaten zuriickgegeben, die sich innerhalb des so definierten Polygons
befinden. Das gegebene Polygon muss dabei zusammenhangend und geschlossen
sein, das heifSt der erste Punkt entspricht dem Letzten. Um mehrere, nicht tiberlap-
pende Polygone abzufragen, missen multiple Abfragen gestellt werden.

Beispiel: Polygonfilter

1 query {

2 listParkingFacilities(

3 filter: {

4 coordinateInPolygon: {coordinates : [{lat: 50.781547, lon: 6.087198},
5 {lat: 50.790207, lon: 6.057198},
6 {lat: 50.774207, lon: 6.057198},
7 {lat: 50.781547, lon: 6.087198}]}
8 }

9 ) {
10 id
11 name
12 lat
13 lon
14 provider {
15 id
16 }

Seite 13 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

17 }
18 }

Der Filter nach Keywords fiir Kommunen (siehe Liste) ist ein Polygonfilter, der bereits
die Flache der jeweiligen Kommune (auf Kreisebene bzw. Ebene einer kreisfreien
Stadt) berucksichtigt.

Beispiel: Filter nach Keywords fiir Kommunen

1 query {

2 listParkingFacilities(

3 filter: {

4 providerId: { operator: containedIn, values: 45 }
5 coordinateInRegion: { namedRegion: Duesseldorf }
6 }

7 ) {

8 id

9 name

10 lat

11 lon

12 provider {

13 id

14 }

15 }

16}

Die Keywords AVV, NWL, VRR, VRS sowie go.Rheinland und Nordrhein-Westfalen
sind giltig, ebenso fir die Kommunen auf der folgenden Seite (zugeordnet nach
Verbundraum):

Seite 14 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW

RHEINLAND
Bewegt Dich.

AVV NWL VRR VRS
Diren Bielefeld Bochum Bonn
Heinsberg Borken Bottrop Euskirchen
Stadteregion Aachen | Coesfeld Dortmund Koln
Gutersloh Duisburg Leverkusen
Hamm Disseldorf Oberbergischer Kreis
Herford Ennepe-Ruhr-Kreis | Rhein-Erft-Kreis
Hochsauerlandkreis | Essen Rheinisch-Bergischer Kreis
Hoxter Gelsenkirchen Rhein-Sieg-Kreis
Lippe Hagen
Markischer Kreis Herne
Minden-Libbecke Kleve
Miunster Mettmann
Olpe Monchengladbach
Paderborn Milheim a.d. Ruhr
Siegen-Wittgenstein | Oberhausen
Soest Recklinghausen
Steinfurt Rhein-Kreis-Neuss
Unna Remscheid
Warendorf Solingen
Wesel
Wuppertal
Viersen

2.3.6 Datenkatalog Meta-Daten

Die Synchronisation zwischen Datenkatalog und MDD NRW erlaubt es, die dort
gesetzten Meta-Daten als Filter fir GraphQL zu verwenden.

Die verfliigbaren Meta-Daten fur alle verfiighbaren Provider sind iiber die folgende
Abfrage verfugbar:

query {

listMetakeywords {
keyword
type
value
id

Seite 15 von 29

Kontakt: mdd-nrw@gorheinland.com




Bewegt Dich.

Multimodale Datendrehscheibe NRW @ RHEINLAND

Die Datenkatalog Meta-Daten setzen sich aus drei Feldern zusammen: Typ, Schlis-
selwort und Wert.

Typ:

Der Typ des Meta-Datum entspricht den verschiedenen Schlisselwort - Typen des
Datenkatalogs. Die moglichen Werte sind als ENUMS definiert und miissen ohne
Anfiihrungszeichen (") iibergeben werden. Die moglichen Typen sind:

 TAG
* GROUP

* FORMAT

LICENSE

CUSTOM_FIELD

Schlisselwort:

Dies ist nur notwendig bei Abfrage von Meta-Daten des Typs "CUSTOM FIELD".
Benutzerdefinierte Felder bieten mit dem Schliisselwort eine weitere Ebene in der
Hierarchie bei der Abfrage, um verschiedene benutzerdefinierte Felder voneinander
abtrennen zu konnen. Das Schliusselwort entspricht bei allen Typen auller "CUS-
TOM_FIELD" dem Wert des Meta-Datums.

Wert:
Dieses Feld beinhaltet die Auspragung des Meta-Datums. Beispiel: ,Bikesharing”.

Die Meta-Daten konnen beim Filtern der Provider angewendet werden, in dem eine
Liste von Typ, Schlisselwort und Wert - Kombinationen in den metaKeyword Filter
gesetzt werden. Das Filtern einer Kombination dieser Felder ist mit einem logi-
schen ,,UND” verknlpft und liefert alle Datenlieferanten, auf die diese Kombination
zutrifft.

Beispiel:

Schema fiir eine Abfrage von providern mit Meta-Daten Filter.

query {
listProviders(
filter: {
metaKeyword: [
{ type: <Typ> }
{ keyword: "<Schluesselwort>" }
{ value: "<Wert>" }
1

) {

id

name
metakeywords {

1
2
3
4
5
6
7
8
9 }
10
11
12
13
14 keyword

Seite 16 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

15 type
16 value
17 }

18 }

19 1}

2.3.7 Postman Query Baum

Zum einfachen Erstellen von Queries empfehlen wir die Nutzung von Postman. Uber
die GraphQL Introspection ist es moglich, zum Schema passende Queries direkt in
Postman zu erstellen.

Dazu wird zunachst eine neuer GraphQL Request in einem Postman Workspace er-
stellt.

No Environment

Neue GraphQL
Query erstellen. [) save

=

GraphQL

Als URL wird der GraphQL Endpunkt der MDD NRW angegeben und die Introspec-
tion gestartet.

Seite 17 von 29 Kontakt: mdd-nrw@gorheinland.com


https://web.postman.co/

Multimodale Datendrehscheibe NRW RHEINLAND

Bewegt Dich.

2 Untitled Request

https://mdd.vrs.de/graphal

Query A " o MDD NRW GraphQL
4 C . Endpunkt URL

Introspection

erlaubt es
Postman das
Schema des
Endpunkts
auszulesen

Explore data available from server

Fir die Autorisierung muss im Header iiber den Key x-api-key ein gultiger API-Key
ubergeben werden, vgl. Kapitel Autorisierung.

https://mdd.vrs.de/graphgl

Im Reiter "Headers" APl-Key
Headers angeben.

Headers 3 hidden
Key

x-api-key

Postman erkennt nun automatisch die in Abschnitt Queries beschriebenen Endpunkte
und erlaubt durch eine klickbare Oberflache giltige Queries zu generieren.

List i
listProviders {
name
- i
|| locationById
listProviders
[ 1imit

[] offset

= Gewiinschte Query und Felder
L el auswahlen. Die zugehorige GraphQL
— Query wird im rechten Fenster
[] ecalendars automatisch generiert.

[] childProviders

Die Query kann nun direkt in Postman ausgefiihrt oder anderweitig verwendet wer-
den.

Seite 18 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

https://mdd.vrs.de/graphgl Query ausfiihren.

Query Autho He

ListPxrc
listProviders
ENIE

Postman unterstiitzt auch Pagination und Filter iber diese Oberflache, allerdings
werden Listenfilter aktuell noch nicht unterstiitzt und miissen vom Nutzer manuell
zur Query hinzugefugt werden.

2.3.8 GZIP Kompression

Es ist moglich, die GroRe des Outputs einer GraphQL Abfrage zu reduzieren, indem
bei der Abfrage GZIP-Kompression verwendet wird.
Dafiir missen im Header der Anfrage folgende Parameter mitgegeben werden:

Content-Type: application/graphgl+json
und

Accept-Encoding: gzip

Seite 19 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

3 GBFS Endpunkt

Der GBFS Endpunkt kann per GET-Request nach folgendem Schema abgerufen wer-
den:

https://mdd.gorheinland.com/gbfs-output/<provider_id>/<version>/<
endpunkt>

Als <provider id> wird die ID eines zulassigen Providers eingesetzt. In diesem
Beispiel arbeiten wir mit dem erfunden Provider "ScooterSharer" mit ID "1". Das
Keyword <version> bestimmt die Version des GBFS Feeds, der abgefragt werden
soll und als <endpunkt> stehen alle der gewéahlten Version tiblichen Endpunkte nach
GBFS-Spezifikation zur Verfiigung. Uber den gbfs.json Endpunkt erhélt man somit
auch eine Ubersicht iiber die verfiigharen GBFS-Endpunkte des jeweiligen Daten-
lieferanten in der MDD NRW.

Beispiel: Abfrage des Auto-discovery Files des GBFS-Feeds der Version 2.3 fiir den
Provider mit ID 1:

https://mdd.gorheinland.com/gbfs-output/1/2.3/gbfs.json

3.1 Liste der unterstiitzten GBFS Versionen
Zum aktuellen Zeitpunkt unterstiitzt die MDD NRW GBFS Feeds folgender Versionen:
e Version 2.3

e Version 3.0

3.2 Gebundelte GBFS Feeds

Gebundelte Feeds sammeln die Daten aller Zonen der zugehorigen Datenlieferanten.
Gebiindelte Feeds konnen, falls verfiugbar, uiber die ID des Anbieters wie von einer
Zone abgefragt werden.

Hat zum Beispiel der Anbieter mit ID 1 die Zonen mit IDs 11 und 12, so kann der
gebundelte Feed mit allen Daten der Zonen 11 und 12 wie folgt abgefragt werden:

https://mdd.gorheinland.com/gbfs-output/1/2.3/gbfs.json

Um einzigartige GBFS-IDs zu gewahrleisten, werden die originalen IDs mit dem Na-
men der jeweiligen Zone verschnitten. Das verwendete Muster ist:

<system_information name der Zone>_: _<original ID des objects>

Seite 20 von 29 Kontakt: mdd-nrw@gorheinland.com


https://github.com/MobilityData/gbfs
https://github.com/MobilityData/gbfs/blob/v2.3/gbfs.md
https://github.com/MobilityData/gbfs/blob/v3.0/gbfs.md

Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

4 GTFS Endpunkt

Der GTFS Endpunkt kann per GET-Request nach folgendem Schema abgerufen wer-
den:

https://mdd.gorheinland.com/gtfs-output/<provider_id>/

Als <provider id> wird die ID eines zulassigen Providers eingesetzt. In diesem
Beispiel arbeiten wir mit dem erfunden Provider "Fahrplandaten" mit ID "2". Der
Call gibt ein ZIP-Ordner mit den verfiigbaren Dateien nach GTFS-Standard zuriick.
Beispiel: Abfrage des GTFS-Feeds den Provider mit ID 2:

https://mdd.gorheinland.com/gtfs-output/2/

Der GTFS-Feed fiir die Landesweiten Fahrplandaten NRW wird aufgrund seiner Grof3e
nur iiber den direkten GTFS Endpunkt vollstandig zur Verfiigung gestellt. Uber die
Graph-QL Schnittstelle erhalt man nur einen reduzierten Feed ohne Haltestelleninfor-
mationen.

Seite 21 von 29 Kontakt: mdd-nrw@gorheinland.com


https://developers.google.com/transit/gtfs?hl=de

Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

5 Datex-II Endpunkt

Datex-II ist der europaische Standard fir den Austausch von Verkehrsdaten.

Die MDD NRW stellt fir geeignete Anbieter dynamische und statische Datex-II-Feeds
zur Verfugung.

Das URL-Schema fiir die Abfrage der statischen Feeds ist:

https://mdd.gorheinland.com//datex2-output/<version>/<provider_id>/
Die URL fir dynamische Feeds ist:

https://mdd.gorheinland.com//datex2-output/<version>/<provider_id>/
status

Welche Anbieter welche Feeds unterstiitzt, kann den Factsheets entnommen werden.
Zum aktuellen Zeitpunkt unterstiitzt die MDD NRW Datex-II in der Version 3.1.
Link zur offiziellen Dokumentation.

Das Archiv fiir das verwendete Datex-II Schema kann hier heruntergeladen werden.

Beispiel: Abfrage des statischen Datex-II Feeds der Version 3.1 fur den Provider mit
ID 1:

https://mdd.gorheinland.com/datex2-output/3.1/1/

Seite 22 von 29 Kontakt: mdd-nrw@gorheinland.com


https://datex2.eu/
https://docs.datex2.eu/v3.1/
https://download.vrs.de/mdd/datex2-schema.zip

Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

6 Geoserver

6.1 Authentifizierung

Der Zugang zum Geoserver (mdd.gorheinland.com/geoserver) erfolgt anders als bei
anderen Endpunkten iiber Basic Auth mit Nutzername und Passwort. Nutzername
und Passwort setzen sich aus der Schlussel-ID und dem API-Token eines Clienten

zusammen.
Zugangstoken
Schlisselname Geoserver o
Schlissel-ID | 47e5c217-c69e-4046-be9e-8694a35c573b | Nutzername
Erstellungsdatum 10.10.2024 08:55

Monatliches Abfragelimit 3000

Car&RideSharing Community eG

Connected Mobility Disseldorf

VRR Fahrplan Echtzeitdaten

goFLUX GTFS

Velocity

Free2move

Lime

wupsiCar -

Zugelassene Provider

API| Zugangsschliissel

Passwort

Stellen Sie sicher, dass Sie den API-Zugang kopieren. Aus Sicherheitsgriinden wird dieser nicht noch einmal angezeigt.

In Zwischenablage kopieren m

Seite 23 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW

Die Zugangsdaten sind in dieser Maske einzutragen:

Nutzername Passwort

RHEINLAND
Bewegt Dich.

| Remember me O | @i Anmelden @ de ~

tii GeoServer
Willkommen

Server

GeoServer Web Service, Benutzer anonymous hat Zugriff auf 1 Arbeitsbereiche mit 9 Layern

© Uber GeoServer

1

Wir verbinden die Region Seit 1987 bringt der Verkehrsverbund Rhein-Sieg (VRS) Kreise, Kommunen und Menschen zusammen. Lerne uns, unsere Geschichte
Daten und unsere Ziele kennen. Diese GeoServer-Instanz gehért VRS,

3] Layer-Vorscha
[3 Layer-vorschau VRS MDD WMS

Demos

wMS
1.3.0

WMS
111

A compliant implementation of WMS plus most of the SLD extension (dynamic styling). Can also generate PDF, SVG, KML, GeoRSS

Hinweis

Die Schlissel-ID eines Clienten ist fest und andert sich nicht, wenn ein neues API-
Token generiert wird. In diesem Fall muss fiir den Zugang zum Geoserver also nur das
Passwort ausgetauscht werden.

6.2 Endpunkte

Die MDD NRW bietet Karten-Endpunkte iiber einen Geoserver an.
Die unterstiitzten Formate sind:

Endpunkt | Versionen

WMS 1.3.0 1.1.1

WMTS 1.1.1

TMS 1.0.0

WMS-C 1.1.1

WFS 2.0.0 1.1.0 1.0.0

WCS 201 1.1.1 1.1.0 1.1 1.0.0

Jedes Format verfugt dabei uber einen eigenen Endpunkt:

WMS

https://mdd.gorheinland.com/geoserver/ows?service=WMS&version=<version
>&request=GetCapabilities

WMTS

https://mdd.gorheinland.com/geoserver/gwc/service/wmts?service=WMTS&
version=<version>&request=GetCapabilities

Seite 24 von 29

Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

TMS
https://mdd.gorheinland.com/geoserver/gwc/service/tms/<version>
WMS-C

https://mdd.gorheinland.com/geoserver/gwc/service/wms?service=WMS&
version=<version>&request=GetCapabilities&tiled=true

WEFS

https://mdd.gorheinland.com/geoserver/ows?service=WFS&version=<version
>&request=GetCapabilities

WCS

https://mdd.gorheinland.com/geoserver/ows?service=WCS&version=<version
>&request=GetCapabilities

Beispiel: Abfrage des WCS Services mit Version 2.0.0

curl --location 'https://mdd.gorheinland.com/geoserver/ows?service=WCS&
version=2.0.0&request=GetCapabilities' \
--header 'Authorization: <Base64Encode{Nutzername:Passwort}>'

Seite 25 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

6.3 Beispiel: Hinzufiigen des WFS Feeds in QGIS

Im Folgenden werden Beispiele fur das Hinzufligen des WFS- Feeds in QGIS gegeben,
da dieses eins der gangigen Tools zur Einbettung von Geodaten darstellt. Es ist zu
beachten, dass sich die Oberflache dndern kann. Die Screenshots dienen lediglich
der Veranschaulichung.

In QGIS missen folgende Schritte umgesetzt werden, um den WFS-Feed hinzuzufi-
gen:

* im linken Reiter per Rechtsklick auf WFS / OGC API Feature "Neue Verbindung
auswahlen" (siehe Screenshot)

v e WY7 Tiles

& WCS

WEFS / OGC API—Fanteiman :
v = WFS Test MNeue Verbindung...

") Bahnhoe Verbindungen speichem...
4" Fahrzeug

Verbindungen laden...
V) Fahrzeuge-omesmarmgory

* im Pop-Up unter Verbindungsdetails

- Name vergeben
- URL fur WFS-Feed eingeben

» unter Authentifizierung "Basic" auswahlen

- Benutzername eingeben

- Passwort eingeben
* unter WFS-Optionen

Version 2.0 auswahlen

Objektpaging anhaken

SeitengrofSe auf 10000 einstellen

ok klicken (siehe Screenshot nachste Seite)

Seite 26 von 29 Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW

RHEINLAND

Bewegt Dich.

() Neue WF5-Verbindung anlegen

Verbindungsdetails

https://mdd.gorheinland.com/geoserver/wfs

enthzierung

Konfigurationen I Basic I

addd596-b9d4-4640-ac98-0d055469a45e

Passwort (d)

Warnung: Zugangsdaten werden im Klartext in Projektdatei gespeichert.

Konfiguration umwandeln

WFS-Optionen

Version

-
Maximale Objektanzahl

I v DH'eﬁaHina aktivieran I
I SeitengroBe I

Bestimmen

|100000]
Achsenorientierung ignorieren (WFS 1.1/WFS 2.0)

Achsenorientierung invertieren

GML2-Kodierung fiir Transaktionen verwenden

Danach werden die einzelnen Layer (je nach zugelassenen Rechten variieren diese)
geladen.

Seite 27 von 29

Kontakt: mdd-nrw@gorheinland.com



Multimodale Datendrehscheibe NRW @

Seite 28 von 29 Kontakt: mdd-nrw@gorheinland.com

7 Direkte Schnittstellen

Datenlieferanten, deren Daten nicht in der MDD NRW vorgehalten werden, aber
uber die MDD NRW abfragbar sind, werden als direkte Schnittstellen zur Verfigung
gestellt.

Diese Schnittstellen sind Uiber die MDD NRW abfragbar, indem der Request uiiber die
MDD NRW direkt an den betreffenden Service weiter geleitet wird.

Zum jetzigen Zeitpunkt ist die direkte Abfrage von Daten aus dem DELFI Landeshin-
tergrundsystem und goFLUX Mobility GmbH moglich.

7.1 DELFI Landeshintergrundsystem

Das DELFI Landeshintergrundsystem verwendet als Schnittstelle die vom VDV ent-
wickelte VDV 431 TRIAS Schnittstelle. Die Dokumentation kann auf dieser Website
eingesehen werden: Informationen zu TRIAS.

Abfragen werden uber den Endpunkt

POST https://mdd.gorheinland.com/delfi

unter Angabe des MDD NRW API-Key gestellt, siche Kapitel Autorisierung. Der
Content-Type des Requests ist "application/xml".

Der Inhalt des Requests wird uber den Request-Body abgefragt, dieser muss dem
TRIAS-Format entsprechen.

Beispiel:

Schematischer Request-Body fir eine DELFI Abfrage:

<?xml version="1.0" encoding="UTF-8"?>
<Trias version="1.2" xmlns="http://www.vdv.de/trias" xmlns:siri="http://www.siri.org.uk/siri">
<ServiceRequest>
<siri:RequestTimestamp>YYYY-MM-DDTHH:mm:SS</siri:RequestTimestamp>
<siri:RequestorRef>xxx</siri:RequestorRef>
<RequestPayload>
<StopEventRequest>
<Location>
<LocationRef>
<StopPointRef>STOP_POINT_REF</StopPointRef>
</LocationRef>
<DepArrTime>YYYY-MM-DDTHH:mm:SS</DepArrTime>
</Location>
<Params>
<NumberOfResults>10</Number0fResults>
<StopEventType>arrival</StopEventType>
<IncludePreviousCalls>true</IncludePreviousCalls>
<IncludeOnwardCalls>true</IncludeOnwardCalls>
<IncludeRealtimeData>true</IncludeRealtimeData>
</Params>
</StopEventRequest>
</RequestPayload>
</ServiceRequest>
</Trias>

RHEINLAND

Bewegt Dich.


https://www.delfi.de/
https://www.delfi.de/
https://goflux.de/
https://www.vdv.de/
https://www.vdv.de/ip-kom-oev.aspx

Multimodale Datendrehscheibe NRW @ RHEINLAND

Bewegt Dich.

7.2 goFLUX Mobility GmbH
Abfragen werden uber den Endpunkt
POST https://mdd.gorheinland.com/goflux

unter Angabe des MDD NRW API-Keys gestellt, siche Kapitel Autorisierung. Der
Content-Type des Requests ist "application/json".

Der Inhalt des Requests wird iiber den Request-Body abgefragt, dieser muss dem
goFLUX-Format entsprechen. Die Schnittstellenbeschreibung kann auf dieser Web-
site eingesehen werden: Dokumentation goFLUX.

Beispiel

Schematischer Request-Body fir eine goFLUX Abfrage:

{
"date": {unix_timestamp[s]}, # Beispiel: 1721137180
"timeDelta": 7200,
"departurelLat": 48.800534,
"departurelLng": 2.295088,
"arrivallat": 48.765463,
"arrivallng": 2.072499,
"departureRadius": 10,
"arrivalRadius": 10,
"expectedDepartureDateTime": "{{request_timestamp}}"

= O WO U R WNR-

_ =

Seite 29 von 29 Kontakt: mdd-nrw@gorheinland.com


https://app.swaggerhub.com/apis/Karos/karos-api/1.1.0-oas3#/

	Autorisierung
	GraphQL Endpunkt
	Schema
	Komplexe Attribute
	Queries
	Aufbau des Query types
	Query Argumente
	Filtern von Queries
	Abfragen gebündelter Daten
	Geofilter
	Datenkatalog Meta-Daten
	Postman Query Baum
	GZIP Kompression


	GBFS Endpunkt
	Liste der unterstützten GBFS Versionen
	Gebündelte GBFS Feeds

	GTFS Endpunkt
	Datex-II Endpunkt
	Geoserver
	Authentifizierung
	Endpunkte
	Beispiel: Hinzufügen des WFS Feeds in QGIS

	Direkte Schnittstellen
	DELFI Landeshintergrundsystem
	goFLUX Mobility GmbH


