
Multimodale Datendrehscheibe NRW

MDD NRW Schnittstellenbeschreibung

v1.6

Januar 2026

Contents

1 Autorisierung 2

2 GraphQL Endpunkt 4
2.1 Schema . 4
2.2 Komplexe Attribute . 5
2.3 Queries . 6

2.3.1 Aufbau des Query types . 7
2.3.2 Query Argumente . 9
2.3.3 Filtern von Queries . 10
2.3.4 Abfragen gebündelter Daten . 11
2.3.5 Geofilter . 13
2.3.6 Datenkatalog Meta-Daten . 15
2.3.7 Postman Query Baum . 17
2.3.8 GZIP Kompression . 19

3 GBFS Endpunkt 20
3.1 Liste der unterstützten GBFS Versionen 20
3.2 Gebündelte GBFS Feeds . 20

4 GTFS Endpunkt 21

5 Datex-II Endpunkt 22

6 Geoserver 23
6.1 Authentifizierung . 23
6.2 Endpunkte . 24
6.3 Beispiel: Hinzufügen des WFS Feeds in QGIS 26

7 Direkte Schnittstellen 28
7.1 DELFI Landeshintergrundsystem . 28
7.2 goFLUX Mobility GmbH . 29

Multimodale Datendrehscheibe NRW

1 Autorisierung

In der MDD NRW sind jedem Nutzer ein oder mehrere Clienten zugeordnet. Clienten
stellen voneinander unabhängige Zugänge zu den Daten in der MDD NRW dar. Jeder
Client verfügt über einen Zugangstoken (in Form eines API-Keys), mit dem die Daten
der MDD NRW abgefragt werden können. An den Clienten sind auch Einschränkun-
gen, wie das Request Limit und Zugriffsrechte, gebunden. Die Anzahl der Clienten
und die jeweiligen Zugriffsrechte werden nicht vom User selbst verwaltet.
Für eine Erweiterung der Zugriffsrechte oder Erhöhung des Request Limits muss der
Support unter mdd-nrw@gorheinland.com kontaktiert werden.

!Wichtig!

Jedem Clienten sind eine oder mehrere Funktionen zugeordnet, aus denen sich die eben-
falls im Nutzerportal einsehbaren Nutzungszwecke ableiten. Es ist die Pflicht jedes
Nutzers der MDD NRW diese Nutzungszwecke einzuhalten.

Die Autorisierung erfolgt mittels API-Key. API-Keys können von registrierten Nutzern
über das Nutzerportal für jeden Clienten selbst generiert und erneuert werden.

Nutzerportal

Nutzerportal

Zur Autorisierung gegenüber einer der Schnittstellen der MDD NRW muss der API-
Key im Header mit dem key x-api-key mitgegeben werden.

Seite 2 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Beispiel:
Abfrage des GBFS Auto-discovery Files der Version 2.3 des Providers mit ID 1 mit
dem API-Key <api-key>:

curl --location
'https://mdd.gorheinland.com/gbfs-output/1/2.3/gbfs.json' \
--header 'x-api-key: <api-key>'

Hinweis

API-Keys werden nicht zentral in der MDD NRW gespeichert. Sie werden beim gener-
ieren einmalig dem Nutzer angezeigt und müssen vom Nutzer eigenständig gesichert
werden. Ist der aktuelle API-Key verloren, kann dieser nicht wiederhergestellt werden
und der Nutzer muss sich im Nutzerportal der MDD NRW einen neuen API-Key gener-
ieren.

Seite 3 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

2 GraphQL Endpunkt

GraphQL ist eine Abfragesprache, die es erlaubt mittels einer query nur diejeni-
gen Daten abzufragen, die benötigt werden. Das GraphQL-Schema (siehe Kapi-
tel Schema) definiert, welche Abfragen an die Schnittstelle grundlegend möglich
sind. Die genaue Erstellung der query ist dem Nutzer überlassen.

In GraphQL gibt es zwei Arten von Attributen, primitiv und komplex. Ein Attribut
ist primitiv, wenn es selber keine Attribute hat. Primitive Attribute haben primitive
Datentypen wie

• String

• BigInteger

• Boolean

• Float

• DateTime

• ...

Komplexe Attribute werden im Schema beschrieben und bestehen selbst aus primi-
tiven und komplexen Attributen. Durch das Verschachteln komplexer Attribute wer-
den Verknüpfungen zwischen Daten hergestellt, welche flexible Abfragen über mehrere
Attribute hinweg erlauben. Weitere Informationen zum Abfragen komplexer Attribute
finden sich im Kapitel Queries.

2.1 Schema

Das GraphQL-Schema kann über einen GET-Request an folgende URL abfragt wer-
den:

https://mdd.gorheinland.com/graphql/schema.graphql

Die Response ist ein GraphQL-Schema. Das GraphQL-Schema beschreibt, welche
Abfragen über die MDD NRW GraphQL-Schnittstelle möglich sind. Es enthält fol-
gende grundlegenden Keywords:

• type: Komplexe Datentypen

• enum: Auflistungen

• input: Argumente

Seite 4 von 29 Kontakt: mdd-nrw@gorheinland.com

https://graphql.org/learn/schema/

Multimodale Datendrehscheibe NRW

Ein type definiert komplexe Datentypen. Komplexe Datentypen sind in GraphQL viel-
seitig einsetzbar. Neben abfragbaren Daten werden hierüber auch die Funktionen
zum Abfragen der Daten definiert, siehe Kapitel Queries. Mehr zu komplexen Daten-
typen zum Abfragen von Daten findet sich in Kapitel Komplexe Attribute.
Ein enum ist eine vordefinierte Liste von Werten. Hier z.B. FeatureType in gekürzter
Darstellung:

1 enum FeatureType {
2 ACCESSIBLE_PARTIAL_PAVED_SURFACE
3 ACCESSIBLE_PAVED_SURFACE
4 ACCESSIBLE_UNPAVED_SURFACE
5 ACCESS_AT_GROUND_LEVEL
6 ACCESS_CURB_STEP
7 ACCESS_DOOR
8 ...
9 }

Das Keyword input weist darauf hin, dass dieser Typ als Input für Queries verwen-
det wird, wie beispielsweise Filter. Der Input-Typ ParkingFacilityFilter wird zum
Beispiel im query listParkingFacilities verwendet. Mehr zum Thema Filtern findet
sich in Kapitel Filtern von Queries.

Hinweis

Die hier gezeigten Queries dienen nur zur Veranschaulichung und basieren nicht unbe-
dingt auf der aktuellsten Version des GraphQL-Schemas.
Wir empfehlen immer das aktuelle GraphQL-Schema über die Schnittstelle abzufragen
und auf dessen Basis Queries zu bauen.

2.2 Komplexe Attribute

Ein komplexes Attribut wird mit dem Keyword type initialisiert. Alle verfügbaren
komplexen Attribute sind im GraphQL-Schema beschrieben und sind wie folgt aufge-
baut:

1 "DESCRIPTION"
2 type TYPENAME {
3 FIELD_NAME : TYPE
4 OTHER_FIELD_NAME: DATA_TYPE
5 ...
6 }

TYPENAME ist der Name des komplexen Attributs. Die Attribute hinter den Feldna-
men zeigen an, welche Attribute in einer query abgefragt werden können.
Es ist also möglich anhand des Schemas auszulesen, welche Informationen über
einen im GraphQL-Schema definierten type abgefragt werden können und mit welchen
anderen Datentypen die Informationen verknüpft sind.
Beispiel: Definition eines komplexen Datentypen
Der type ParkingFacility ist wie folgt im Schema definiert:

Seite 5 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

1 "parking facility, for example a bikebox"
2 type ParkingFacility {
3 address: String
4 available: Boolean
5 boxes: [Box]
6 capacities: [Capacity]
7 chargingStations: [ChargingStation]
8 description: String
9 "Id given by provider"

10 externalId: String!
11 externalType: String
12 features: [ParkingFacilityFeature]
13 feeDescription: String
14 id: BigInteger
15 "ISO-8601"
16 lastUpdated: DateTime
17 "latitude of current location of the parking facility"
18 lat: Float
19 "longitude of current location of the parking facility"
20 lon: Float
21 lowestPriceInCents: Int
22 name: String!
23 nextPublicTransportLocation: Location
24 openingTimesDescription: String
25 parkingType: ParkingType
26 postCode: String
27 provider: Provider!
28 tariffs: [Tariff]
29 "Get entry/entries for a certain key/s"
30 urls(key: [UrlKey]): [Entry_UrlKey_Url]
31 }

Es ist möglich, im komplexen Attribut ParkingFacility direkt primitive Attribute wie
lat, lon und id abzufragen. Bei komplexen Attributen wie "Box" muss in der query
angegeben werden, welche Attribute von "Box" enthalten sein sollen.

Hinweis

Wenn ein Datenfeld in der type Definition mit eckigen Klammern "[]" umschlossen ist,
wird bei Abfragen des Datenfeldes eine Liste zurückgegeben. Beispielsweise gibt "boxes"
eine Liste von komplexen Datentypen der Entität "Box" zurück.

2.3 Queries

Um die GraphQL Schnittstelle anzusprechen, sendet man einen POST Request an:

https://mdd.gorheinland.com/graphql

Eine query bestimmt, welche Attribute abgefragt werden. Wenn ein Feld selbst ein
komplexes Attribut zurück gibt, muss festlegt werden, welche Attribute man von
diesem Attribut benötigt, solange bis alle Anfrage-Äste auf einem primitiven Attribut
enden. Dieser Baum, den man in einem Query aufspannt, muss also immer auf
einem primitiven Attribut enden. Es können alle Attribute, welche im type Query

Seite 6 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

aufgelistet sind, abgefragt werden.

Die query selbst wird im body des Requests mitgeschickt. Dabei können den Queries
Argumente übergeben werden und der Rückgabetyp ist ebenfalls im Schema angegeben,
wie in Kapitel Komplexe Attribute beschrieben.

2.3.1 Aufbau des Query types

Welche Anfragen an die Schnittstelle möglich sind, ist ebenfalls im GraphQL-Schema
als type definiert.

1 "Query root"
2 type Query {
3 VehicleTypeTypeById(id: BigInteger!): VehicleType
4 alertById(id: BigInteger!): Alert
5 calendarById(id: BigInteger!): Calendar
6 geofencingZoneById(id: BigInteger!): GeofencingZone
7 "get Rides by goFlux"
8 getRides(arrivalLat: Float!, arrivalLng: Float!, arrivalRadius: Int!, day: Int!, departureLat: Float

!, departureLng: Float!, departureRadius: Int!, hour: Int!, minute: Int!, month: Int!,
timeDeltaSeconds: Int!, year: Int!): String

9 listAlerts(limit: Int, offset: Int, providerId: BigInteger): [Alert]
10 listCalendars(limit: Int, offset: Int, providerId: BigInteger): [Calendar]
11 listGeofencingZones(limit: Int, offset: Int, providerId: BigInteger): [GeofencingZone]
12 listLocations(limit: Int, offset: Int, providerId: BigInteger): [Location]
13 listParkingFacilities(filter: ParkingFacilityFilter, limit: Int, offset: Int, order: Order, orderBy:

ParkingFacilityOrderBy): [ParkingFacility]
14 listPricingPlans(limit: Int, offset: Int, providerId: BigInteger): [PricingPlan]
15 listProviders(limit: Int, offset: Int): [Provider]
16 listRawFeedData(limit: Int, offset: Int, providerId: BigInteger): [RawFeedData]
17 listRegions(limit: Int, offset: Int, providerId: BigInteger): [Region]
18 listRentalHours(limit: Int, offset: Int, providerId: BigInteger): [RentalHour]
19 listSharingStations(limit: Int, offset: Int, providerId: BigInteger): [SharingStation]
20 listSystemInformation(limit: Int, offset: Int, providerId: BigInteger): [SystemInformation]
21 listVehicleTypeTypes(limit: Int, offset: Int, providerId: BigInteger): [VehicleType]
22 listVehicles(limit: Int, offset: Int, providerId: BigInteger): [Vehicle]
23 locationById(id: BigInteger!): Location
24 parkingFacilityById(id: BigInteger!): ParkingFacility
25 pricingPlanById(id: BigInteger!): PricingPlan
26 providerById(id: BigInteger!): Provider
27 rawFeedDataById(id: BigInteger!): RawFeedData
28 regionById(id: BigInteger!): Region
29 rentalHourById(id: BigInteger!): RentalHour
30 sharingStationById(id: BigInteger!): SharingStation
31 systemInformationById(id: BigInteger!): SystemInformation
32 vehicleById(id: BigInteger!): Vehicle
33 "Welcome"
34 welcome(name: String = "World"): String
35 }

Seite 7 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Alle im type Query definierten Funktionen lassen sich für Abfragen der Daten in der
MDD NRW nutzen. Die Query

1 query ListProviders {
2 listProviders {
3 name
4 id
5 }
6 }

beispielsweise gibt Namen und ID aller Provider zurück, auf die man Zugriffsrechte
hat.
Grundlegend lassen sich die so zur Verfügung gestellten Endpunkte in zwei Arten
unterteilen.

listEntity,

welche eine Liste der angefragten Entität zurückgeben und

entityById,

welche die der ID zugehörige Entität zurückgeben.
Die query entityById benötigt dabei immer den Parameter "id". Zu dieser "id" muss
eine Entität in der Datenbank existieren, damit die Abfrage funktioniert.

Beispiel: entityById Query

1 query {
2 ParkingFacilityById(id: 1) {
3 address
4 available
5 boxes {
6 capacity
7 }
8 }
9 }

Diese Abfrage gibt alle Entitäten des types ParkingFacility zurück, welche dem provider
mit ID "1" zugeordnet sind.
Analog gibt die folgende Abfrage die gleichen Informationen für Entitäten des types
ParkingFacility zurück, allerdings anstatt nur die Entitäten eines Providers eine Liste
aller Entitäten, auf die man Zugriffsrechte hat.

1 query {
2 listParkingFacility {
3 address
4 available
5 boxes {
6 capacity
7 }
8 }
9 }

Seite 8 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Hinweis

Es ist auch möglich, bei Abfragen der Art listEntity die Ergebnisse zu verfeinern. Mehr
dazu findet sich im Kapitel Filtern von Queries.

2.3.2 Query Argumente

Einer Query können Argumente übergeben werden, um die Response weiter zu ver-
feinern. Die verfügbaren Argumente können in den im type Query definierten Funk-
tionen eingesehen werden. Beispiel: "listParkingFacilities" ist im Schema definiert
als:

1 listParkingFacilities(filter: ParkingFacilityFilter,
2 limit: Int,
3 offset: Int,
4 order: Order,
5 orderBy: ParkingFacilityOrderBy)
6 : [ParkingFacility]

Die verfügbaren Argumente sind somit

• filter: Komplexe Filter, siehe Kapitel Filtern von Queries

• limit (Int): Maximale Anzahl zurückgegebener Entitäten. Es wird empfohlen
bei jeder Abfrage ein Limit zu setzen, da das Abfragen von zu vielen Entitäten
auf einmal sehr lange dauern kann. Das ist insbesondere beim Abfragen von
GTFS-Daten über GraphQL relevant.

• offset (Int): Anzahl von Entitäten die in der Response übersprungen werden.
Zusammen mit limit für Pagination geeignet.

• order: ASC für aufsteigend, DESC für absteigend.

• orderBy: Bestimmt, nach welchem Feld sortiert werden soll. Die verfügbaren
Felder sind als enum der zugehörigen "typeOrderBy" im GraphQL-Schema definiert.

Beispiel: Query mit Argumenten

1 query {
2 listParkingFacilities(limit: 3, offset: 2, orderBy: parkingType, order: ASC) {
3 id
4 name
5 parkingType
6 lastUpdated
7 provider {
8 id
9 }

10 }
11 }

Seite 9 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

2.3.3 Filtern von Queries

Filter arbeiten auf den in type Query definierten Funktionen für die Datenabfrage.
Im Beispiel von "listParkingFacilities" ist als Filter der ParkingFacilityFilter definiert.
Filter sind, wie in Kapitel Schema beschrieben, im GraphQL-Schema als input definiert.
Der ParkingFacilityFilter sieht wie folgt aus:

1 input ParkingFacilityFilter {
2 address: [StringFieldFilter]
3 available: EqualityFieldFilter_Boolean
4 coordinate: LocationFieldFilter
5 description: [StringFieldFilter]
6 externalId: EqualityFieldFilter_BigInteger
7 externalType: [StringFieldFilter]
8 lastUpdated: [DateFieldFilter]
9 lowestPriceInCents: [NumberFieldFilter_Int]

10 name: [StringFieldFilter]
11 nextPublicTransportLocationId: EqualityFieldFilter_BigInteger
12 nextPublicTransportLocationName: [StringFieldFilter]
13 parkingType: EqualityFieldFilter_ParkingType
14 postCode: [StringFieldFilter]
15 providerId: EqualityFieldFilter
16 providerName: [StringFieldFilter]
17 }

Im ParkingFacilityFilter sind für die meisten primitiven Attribute vom type Parking-
Facility je nach Datentyp Feld-Filter definiert. Darüber hinaus gibt es einen Filter
für ID und Name des Providers, also für primitive Attribute des komplexen Attributs
Provider. Die Feld-Filter sind ebenfalls im GraphQL-Schema aufgelistet. Um nach
providerId zu filtern, wird hier der Feld-Filter ProviderIdFilter genutzt. Dieser ist
definiert als:

1 input ProviderIdFilter {
2 operator: ContainedOperator
3 values: [BigInteger]
4 }

Feld-Filter bestehen immer aus einem value und je nach Filter über einen opera-
tor. Wenn es einen Operator gibt, ist der ebenfalls im GraphQL-Schema als enum
definiert. Operatoren geben an, wie die Einträge in "value" zum Filtern genutzt wer-
den sollen. Hier wird der ContainedOperator verwendet, dieser ist definiert als:

1 enum ContainedOperator {
2 containedIn
3 notContainedIn
4 }

Seite 10 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Um hier also nur ParkingFacilities abzufragen, die den Providern mit ID "1", "2" und
"3" zugeordnet sind, muss der Filter wie folgt gesetzt werden:

1 query {
2 listParkingFacilities(
3 filter: { providerId: { values: [1, 2, 3], operator: containedIn}}
4) {
5 id
6 name
7 parkingType
8 lastUpdated
9 provider {

10 id
11 }
12 }
13 }

Es können beliebig viele Filter unter dem filter Keyword gesetzt und kombiniert
werden. Multiple Filter werden mit Kommas getrennt und sind logisch als "und"
verknüpft.

1 query {
2 listParkingFacilities(
3 filter: {
4 providerId: { values: [1, 2, 3], operator: containedIn},
5 lastUpdated: { value: "2024-01-17T18:00:00.00Z", operator: after}
6 }
7) {
8 id
9 name

10 parkingType
11 lastUpdated
12 provider {
13 id
14 }
15 }
16 }

Diese Abfrage gibt also nur Entitäten zurück, welche providerId "1", "2" oder "3"
haben und nach dem 17.01.2024 00:00 Uhr zuletzt aktualisiert wurden.
Geofilter sind besondere Filter, die in Kapitel Geofilter beschrieben werden.

2.3.4 Abfragen gebündelter Daten

GraphQL erlaubt durch das Setzen der entsprechenden Filter das Abfragen von
gebündelten Daten. Mit gebündelten Daten sind in diesem Kontext die Daten mehrerer
Provider gemeint, welche im Datenmodell der MDD NRW harmonisiert wurden.

Beispiel: Abfrage aller Fahrzeuge die zu den Providern mit den IDs 1, 2 und 3
gehören:

Seite 11 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

1 query ListVehicles {
2 listVehicles(
3 filter: {
4 providerId: { values: [1, 2, 3] }, operator: containedIn}
5) {
6 id
7 lastReported
8 lastUpdated
9 lat

10 lon
11 status
12 }
13 }

Der Provider-Filter erlaubt es außerdem, Nutzern der MDD NRW die gebündelten
Daten aller Zonen eines Providers abzufragen. Wenn zum Beispiel der Provider mit
ID 1 Zonen mit den IDs 11, 12 und 13 hat, sind folgende Abfragen identisch:

1 query ListVehicles {
2 listVehicles(
3 filter: {
4 providerId: { values: [1] }, operator: containedIn}
5) {
6 id
7 lastReported
8 lastUpdated
9 lat

10 lon
11 status
12 }
13 }

und

1 query ListVehicles {
2 listVehicles(
3 filter: {
4 providerId: { values: [11, 12, 13] }, operator: containedIn}
5) {
6 id
7 lastReported
8 lastUpdated
9 lat

10 lon
11 status
12 }
13 }

Im Datenmodell der MDD NRW wird nicht zwischen Providern und Provider-Zonen
unterschieden. Des Weiteren verfügt nicht jeder Provider über Zonen. Die Zuge-
hörigkeit von Provider-Zonen zu Providern kann im Datenkatalog der MDD NRW
oder dem Feld parentProvider in der listProviders und providerbyID Queries ent-
nommen werden. Welche Provider über Zonen verfügen und welche nicht, kann im
Datenkatalog der MDD NRW eingesehen werden.

Seite 12 von 29 Kontakt: mdd-nrw@gorheinland.com

https://ckan.mdd.gorheinland.com

Multimodale Datendrehscheibe NRW

2.3.5 Geofilter

Ortsbezogene Daten der MDD NRW können mittels Umkreisfilter, Polygonfilter
und Keyword nach Kommune gefiltert werden.
Umkreisfilter erlauben es, Entitäten innerhalb eines nutzerdefinierten Kreises abzufra-
gen. Wenn ein Attribut als Feld-Filter "LocationFieldFilter"

1 input LocationFieldFilter {
2 lat: Float
3 lon: Float
4 rangeInMeter: Float
5 }

hat, ist es möglich durch übergeben eines Mittelpunkts, in der Form von longitude
und latitude Koordinaten und eines Radius in Metern nur jene Entitäten zu erhalten,
die innerhalb des dadurch entstehenden Kreises liegen.
Beispiel: Umkreisfilter mit Radius 15km

1 query {
2 listParkingFacilities(
3 filter: {
4 coordinateInRadius: { lat: 50.786075564, lon: 6.101432940, rangeInMeter: 15000 }
5 }
6) {
7 id
8 name
9 lat

10 lon
11 provider {
12 id
13 }
14 }
15 }

Der Polygonfilter erlaubt es, eine Liste von Geokoordinaten zu übergeben. Es wer-
den nur Entitäten zurückgegeben, die sich innerhalb des so definierten Polygons
befinden. Das gegebene Polygon muss dabei zusammenhängend und geschlossen
sein, das heißt der erste Punkt entspricht dem Letzten. Um mehrere, nicht überlap-
pende Polygone abzufragen, müssen multiple Abfragen gestellt werden.
Beispiel: Polygonfilter

1 query {
2 listParkingFacilities(
3 filter: {
4 coordinateInPolygon: {coordinates : [{lat: 50.781547, lon: 6.087198},
5 {lat: 50.790207, lon: 6.057198},
6 {lat: 50.774207, lon: 6.057198},
7 {lat: 50.781547, lon: 6.087198}]}
8 }
9) {

10 id
11 name
12 lat
13 lon
14 provider {
15 id
16 }

Seite 13 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

17 }
18 }

Der Filter nach Keywords für Kommunen (siehe Liste) ist ein Polygonfilter, der bereits
die Fläche der jeweiligen Kommune (auf Kreisebene bzw. Ebene einer kreisfreien
Stadt) berücksichtigt.
Beispiel: Filter nach Keywords für Kommunen

1 query {
2 listParkingFacilities(
3 filter: {
4 providerId: { operator: containedIn, values: 45 }
5 coordinateInRegion: { namedRegion: Duesseldorf }
6 }
7) {
8 id
9 name

10 lat
11 lon
12 provider {
13 id
14 }
15 }
16 }

Die Keywords AVV, NWL, VRR, VRS sowie go.Rheinland und Nordrhein-Westfalen
sind gültig, ebenso für die Kommunen auf der folgenden Seite (zugeordnet nach
Verbundraum):

Seite 14 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

AVV NWL VRR VRS

Düren Bielefeld Bochum Bonn

Heinsberg Borken Bottrop Euskirchen

Städteregion Aachen Coesfeld Dortmund Köln

Gütersloh Duisburg Leverkusen

Hamm Düsseldorf Oberbergischer Kreis

Herford Ennepe-Ruhr-Kreis Rhein-Erft-Kreis

Hochsauerlandkreis Essen Rheinisch-Bergischer Kreis

Höxter Gelsenkirchen Rhein-Sieg-Kreis

Lippe Hagen

Märkischer Kreis Herne

Minden-Lübbecke Kleve

Münster Mettmann

Olpe Mönchengladbach

Paderborn Mülheim a.d. Ruhr

Siegen-Wittgenstein Oberhausen

Soest Recklinghausen

Steinfurt Rhein-Kreis-Neuss

Unna Remscheid

Warendorf Solingen

Wesel

Wuppertal

Viersen

2.3.6 Datenkatalog Meta-Daten

Die Synchronisation zwischen Datenkatalog und MDD NRW erlaubt es, die dort
gesetzten Meta-Daten als Filter für GraphQL zu verwenden.

Die verfügbaren Meta-Daten für alle verfügbaren Provider sind über die folgende
Abfrage verfügbar:

1 query {
2 listMetakeywords {
3 keyword
4 type
5 value
6 id
7 }
8 }

Seite 15 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Die Datenkatalog Meta-Daten setzen sich aus drei Feldern zusammen: Typ, Schlüs-
selwort und Wert.

Typ:
Der Typ des Meta-Datum entspricht den verschiedenen Schlüsselwort - Typen des
Datenkatalogs. Die möglichen Werte sind als ENUMS definiert und müssen ohne
Anführungszeichen (") übergeben werden. Die möglichen Typen sind:

• TAG

• GROUP

• FORMAT

• LICENSE

• CUSTOM_FIELD

Schlüsselwort:
Dies ist nur notwendig bei Abfrage von Meta-Daten des Typs "CUSTOM_FIELD".
Benutzerdefinierte Felder bieten mit dem Schlüsselwort eine weitere Ebene in der
Hierarchie bei der Abfrage, um verschiedene benutzerdefinierte Felder voneinander
abtrennen zu können. Das Schlüsselwort entspricht bei allen Typen außer "CUS-
TOM_FIELD" dem Wert des Meta-Datums.

Wert:
Dieses Feld beinhaltet die Ausprägung des Meta-Datums. Beispiel: „Bikesharing“.

Die Meta-Daten können beim Filtern der Provider angewendet werden, in dem eine
Liste von Typ, Schlüsselwort und Wert - Kombinationen in den metaKeyword Filter
gesetzt werden. Das Filtern einer Kombination dieser Felder ist mit einem logi-
schen „UND“ verknüpft und liefert alle Datenlieferanten, auf die diese Kombination
zutrifft.
Beispiel:
Schema für eine Abfrage von providern mit Meta-Daten Filter.

1 query {
2 listProviders(
3 filter: {
4 metaKeyword: [
5 { type: <Typ> }
6 { keyword: "<Schluesselwort>" }
7 { value: "<Wert>" }
8]
9 }

10) {
11 id
12 name
13 metakeywords {
14 keyword

Seite 16 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

15 type
16 value
17 }
18 }
19 }

2.3.7 Postman Query Baum

Zum einfachen Erstellen von Queries empfehlen wir die Nutzung von Postman. Über
die GraphQL Introspection ist es möglich, zum Schema passende Queries direkt in
Postman zu erstellen.
Dazu wird zunächst eine neuer GraphQL Request in einem Postman Workspace er-
stellt.

Neue GraphQL
Query erstellen.

Als URL wird der GraphQL Endpunkt der MDD NRW angegeben und die Introspec-
tion gestartet.

Seite 17 von 29 Kontakt: mdd-nrw@gorheinland.com

https://web.postman.co/

Multimodale Datendrehscheibe NRW

Introspection
erlaubt es

Postman das
Schema des
Endpunkts
auszulesen

MDD NRW GraphQL
Endpunkt URL

Für die Autorisierung muss im Header über den Key x-api-key ein gültiger API-Key
übergeben werden, vgl. Kapitel Autorisierung.

Im Reiter "Headers" API-Key
angeben.

Postman erkennt nun automatisch die in Abschnitt Queries beschriebenen Endpunkte
und erlaubt durch eine klickbare Oberfläche gültige Queries zu generieren.

Gewünschte Query und Felder
auswählen. Die zugehörige GraphQL

Query wird im rechten Fenster
automatisch generiert.

Die Query kann nun direkt in Postman ausgeführt oder anderweitig verwendet wer-
den.

Seite 18 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Query ausführen.

Postman unterstützt auch Pagination und Filter über diese Oberfläche, allerdings
werden Listenfilter aktuell noch nicht unterstützt und müssen vom Nutzer manuell
zur Query hinzugefügt werden.

2.3.8 GZIP Kompression

Es ist möglich, die Größe des Outputs einer GraphQL Abfrage zu reduzieren, indem
bei der Abfrage GZIP-Kompression verwendet wird.
Dafür müssen im Header der Anfrage folgende Parameter mitgegeben werden:

Content-Type: application/graphql+json

und

Accept-Encoding: gzip

Seite 19 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

3 GBFS Endpunkt

Der GBFS Endpunkt kann per GET-Request nach folgendem Schema abgerufen wer-
den:

https://mdd.gorheinland.com/gbfs-output/<provider_id>/<version>/<
endpunkt>

Als <provider_id> wird die ID eines zulässigen Providers eingesetzt. In diesem
Beispiel arbeiten wir mit dem erfunden Provider "ScooterSharer" mit ID "1". Das
Keyword <version> bestimmt die Version des GBFS Feeds, der abgefragt werden
soll und als <endpunkt> stehen alle der gewählten Version üblichen Endpunkte nach
GBFS-Spezifikation zur Verfügung. Über den gbfs.json Endpunkt erhält man somit
auch eine Übersicht über die verfügbaren GBFS-Endpunkte des jeweiligen Daten-
lieferanten in der MDD NRW.

Beispiel: Abfrage des Auto-discovery Files des GBFS-Feeds der Version 2.3 für den
Provider mit ID 1:

https://mdd.gorheinland.com/gbfs-output/1/2.3/gbfs.json

3.1 Liste der unterstützten GBFS Versionen

Zum aktuellen Zeitpunkt unterstützt die MDD NRW GBFS Feeds folgender Versionen:

• Version 2.3

• Version 3.0

3.2 Gebündelte GBFS Feeds

Gebündelte Feeds sammeln die Daten aller Zonen der zugehörigen Datenlieferanten.
Gebündelte Feeds können, falls verfügbar, über die ID des Anbieters wie von einer
Zone abgefragt werden.
Hat zum Beispiel der Anbieter mit ID 1 die Zonen mit IDs 11 und 12, so kann der
gebündelte Feed mit allen Daten der Zonen 11 und 12 wie folgt abgefragt werden:

https://mdd.gorheinland.com/gbfs-output/1/2.3/gbfs.json

Um einzigartige GBFS-IDs zu gewährleisten, werden die originalen IDs mit dem Na-
men der jeweiligen Zone verschnitten. Das verwendete Muster ist:

<system_information name der Zone>_:_<original ID des objects>

Seite 20 von 29 Kontakt: mdd-nrw@gorheinland.com

https://github.com/MobilityData/gbfs
https://github.com/MobilityData/gbfs/blob/v2.3/gbfs.md
https://github.com/MobilityData/gbfs/blob/v3.0/gbfs.md

Multimodale Datendrehscheibe NRW

4 GTFS Endpunkt

Der GTFS Endpunkt kann per GET-Request nach folgendem Schema abgerufen wer-
den:

https://mdd.gorheinland.com/gtfs-output/<provider_id>/

Als <provider_id> wird die ID eines zulässigen Providers eingesetzt. In diesem
Beispiel arbeiten wir mit dem erfunden Provider "Fahrplandaten" mit ID "2". Der
Call gibt ein ZIP-Ordner mit den verfügbaren Dateien nach GTFS-Standard zurück.
Beispiel: Abfrage des GTFS-Feeds den Provider mit ID 2:

https://mdd.gorheinland.com/gtfs-output/2/

Hinweis

Der GTFS-Feed für die Landesweiten Fahrplandaten NRW wird aufgrund seiner Größe
nur über den direkten GTFS Endpunkt vollständig zur Verfügung gestellt. Über die
Graph-QL Schnittstelle erhält man nur einen reduzierten Feed ohne Haltestelleninfor-
mationen.

Seite 21 von 29 Kontakt: mdd-nrw@gorheinland.com

https://developers.google.com/transit/gtfs?hl=de

Multimodale Datendrehscheibe NRW

5 Datex-II Endpunkt

Datex-II ist der europäische Standard für den Austausch von Verkehrsdaten.
Die MDD NRW stellt für geeignete Anbieter dynamische und statische Datex-II-Feeds
zur Verfügung.
Das URL-Schema für die Abfrage der statischen Feeds ist:

https://mdd.gorheinland.com//datex2-output/<version>/<provider_id>/

Die URL für dynamische Feeds ist:

https://mdd.gorheinland.com//datex2-output/<version>/<provider_id>/
status

Welche Anbieter welche Feeds unterstützt, kann den Factsheets entnommen werden.
Zum aktuellen Zeitpunkt unterstützt die MDD NRW Datex-II in der Version 3.1.
Link zur offiziellen Dokumentation.

Das Archiv für das verwendete Datex-II Schema kann hier heruntergeladen werden.

Beispiel: Abfrage des statischen Datex-II Feeds der Version 3.1 für den Provider mit
ID 1:

https://mdd.gorheinland.com/datex2-output/3.1/1/

Seite 22 von 29 Kontakt: mdd-nrw@gorheinland.com

https://datex2.eu/
https://docs.datex2.eu/v3.1/
https://download.vrs.de/mdd/datex2-schema.zip

Multimodale Datendrehscheibe NRW

6 Geoserver

6.1 Authentifizierung

Der Zugang zum Geoserver (mdd.gorheinland.com/geoserver) erfolgt anders als bei
anderen Endpunkten über Basic Auth mit Nutzername und Passwort. Nutzername
und Passwort setzen sich aus der Schlüssel-ID und dem API-Token eines Clienten
zusammen.

Seite 23 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Die Zugangsdaten sind in dieser Maske einzutragen:

Hinweis

Die Schlüssel-ID eines Clienten ist fest und ändert sich nicht, wenn ein neues API-
Token generiert wird. In diesem Fall muss für den Zugang zum Geoserver also nur das
Passwort ausgetauscht werden.

6.2 Endpunkte

Die MDD NRW bietet Karten-Endpunkte über einen Geoserver an.
Die unterstützten Formate sind:

Endpunkt Versionen
WMS 1.3.0 1.1.1
WMTS 1.1.1
TMS 1.0.0
WMS-C 1.1.1
WFS 2.0.0 1.1.0 1.0.0
WCS 2.0.1 1.1.1 1.1.0 1.1 1.0.0

Jedes Format verfügt dabei über einen eigenen Endpunkt:

WMS

https://mdd.gorheinland.com/geoserver/ows?service=WMS&version=<version
>&request=GetCapabilities

WMTS

https://mdd.gorheinland.com/geoserver/gwc/service/wmts?service=WMTS&
version=<version>&request=GetCapabilities

Seite 24 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

TMS

https://mdd.gorheinland.com/geoserver/gwc/service/tms/<version>

WMS-C

https://mdd.gorheinland.com/geoserver/gwc/service/wms?service=WMS&
version=<version>&request=GetCapabilities&tiled=true

WFS

https://mdd.gorheinland.com/geoserver/ows?service=WFS&version=<version
>&request=GetCapabilities

WCS

https://mdd.gorheinland.com/geoserver/ows?service=WCS&version=<version
>&request=GetCapabilities

Beispiel: Abfrage des WCS Services mit Version 2.0.0

curl --location 'https://mdd.gorheinland.com/geoserver/ows?service=WCS&
version=2.0.0&request=GetCapabilities' \

--header 'Authorization: <Base64Encode{Nutzername:Passwort}>'

Seite 25 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

6.3 Beispiel: Hinzufügen des WFS Feeds in QGIS

Im Folgenden werden Beispiele für das Hinzufügen des WFS- Feeds in QGIS gegeben,
da dieses eins der gängigen Tools zur Einbettung von Geodaten darstellt. Es ist zu
beachten, dass sich die Oberfläche ändern kann. Die Screenshots dienen lediglich
der Veranschaulichung.
In QGIS müssen folgende Schritte umgesetzt werden, um den WFS-Feed hinzuzufü-
gen:

• im linken Reiter per Rechtsklick auf WFS / OGC API Feature "Neue Verbindung
auswählen" (siehe Screenshot)

• im Pop-Up unter Verbindungsdetails

– Name vergeben

– URL für WFS-Feed eingeben

• unter Authentifizierung "Basic" auswählen

– Benutzername eingeben

– Passwort eingeben

• unter WFS-Optionen

– Version 2.0 auswählen

– Objektpaging anhaken

– Seitengröße auf 10000 einstellen

– ok klicken (siehe Screenshot nächste Seite)

Seite 26 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

Danach werden die einzelnen Layer (je nach zugelassenen Rechten variieren diese)
geladen.

Seite 27 von 29 Kontakt: mdd-nrw@gorheinland.com

Multimodale Datendrehscheibe NRW

7 Direkte Schnittstellen

Datenlieferanten, deren Daten nicht in der MDD NRW vorgehalten werden, aber
über die MDD NRW abfragbar sind, werden als direkte Schnittstellen zur Verfügung
gestellt.
Diese Schnittstellen sind über die MDD NRW abfragbar, indem der Request über die
MDD NRW direkt an den betreffenden Service weiter geleitet wird.
Zum jetzigen Zeitpunkt ist die direkte Abfrage von Daten aus dem DELFI Landeshin-
tergrundsystem und goFLUX Mobility GmbH möglich.

7.1 DELFI Landeshintergrundsystem

Das DELFI Landeshintergrundsystem verwendet als Schnittstelle die vom VDV ent-
wickelte VDV 431 TRIAS Schnittstelle. Die Dokumentation kann auf dieser Website
eingesehen werden: Informationen zu TRIAS.
Abfragen werden über den Endpunkt

POST https://mdd.gorheinland.com/delfi

unter Angabe des MDD NRW API-Key gestellt, siehe Kapitel Autorisierung. Der
Content-Type des Requests ist "application/xml".
Der Inhalt des Requests wird über den Request-Body abgefragt, dieser muss dem
TRIAS-Format entsprechen.
Beispiel:
Schematischer Request-Body für eine DELFI Abfrage:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Trias version="1.2" xmlns="http://www.vdv.de/trias" xmlns:siri="http://www.siri.org.uk/siri">
3 <ServiceRequest>
4 <siri:RequestTimestamp>YYYY-MM-DDTHH:mm:SS</siri:RequestTimestamp>
5 <siri:RequestorRef>xxx</siri:RequestorRef>
6 <RequestPayload>
7 <StopEventRequest>
8 <Location>
9 <LocationRef>

10 <StopPointRef>STOP_POINT_REF</StopPointRef>
11 </LocationRef>
12 <DepArrTime>YYYY-MM-DDTHH:mm:SS</DepArrTime>
13 </Location>
14 <Params>
15 <NumberOfResults>10</NumberOfResults>
16 <StopEventType>arrival</StopEventType>
17 <IncludePreviousCalls>true</IncludePreviousCalls>
18 <IncludeOnwardCalls>true</IncludeOnwardCalls>
19 <IncludeRealtimeData>true</IncludeRealtimeData>
20 </Params>
21 </StopEventRequest>
22 </RequestPayload>
23 </ServiceRequest>
24 </Trias>

Seite 28 von 29 Kontakt: mdd-nrw@gorheinland.com

https://www.delfi.de/
https://www.delfi.de/
https://goflux.de/
https://www.vdv.de/
https://www.vdv.de/ip-kom-oev.aspx

Multimodale Datendrehscheibe NRW

7.2 goFLUX Mobility GmbH

Abfragen werden über den Endpunkt

POST https://mdd.gorheinland.com/goflux

unter Angabe des MDD NRW API-Keys gestellt, siehe Kapitel Autorisierung. Der
Content-Type des Requests ist "application/json".
Der Inhalt des Requests wird über den Request-Body abgefragt, dieser muss dem
goFLUX-Format entsprechen. Die Schnittstellenbeschreibung kann auf dieser Web-
site eingesehen werden: Dokumentation goFLUX.
Beispiel
Schematischer Request-Body für eine goFLUX Abfrage:

1 {
2 "date": {unix_timestamp[s]}, # Beispiel: 1721137180
3 "timeDelta": 7200,
4 "departureLat": 48.800534,
5 "departureLng": 2.295088,
6 "arrivalLat": 48.765463,
7 "arrivalLng": 2.072499,
8 "departureRadius": 10,
9 "arrivalRadius": 10,

10 "expectedDepartureDateTime": "{{request_timestamp}}"
11 }

Seite 29 von 29 Kontakt: mdd-nrw@gorheinland.com

https://app.swaggerhub.com/apis/Karos/karos-api/1.1.0-oas3#/

	Autorisierung
	GraphQL Endpunkt
	Schema
	Komplexe Attribute
	Queries
	Aufbau des Query types
	Query Argumente
	Filtern von Queries
	Abfragen gebündelter Daten
	Geofilter
	Datenkatalog Meta-Daten
	Postman Query Baum
	GZIP Kompression

	GBFS Endpunkt
	Liste der unterstützten GBFS Versionen
	Gebündelte GBFS Feeds

	GTFS Endpunkt
	Datex-II Endpunkt
	Geoserver
	Authentifizierung
	Endpunkte
	Beispiel: Hinzufügen des WFS Feeds in QGIS

	Direkte Schnittstellen
	DELFI Landeshintergrundsystem
	goFLUX Mobility GmbH

